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ABSTRACT 

g r 1 4 1  
7 

This report contains a method for obtaining the influence coefficients and 

natural modes of vibration for a complex structure. 

In Part A the flexibility matrix method is described for obtaining the 

influence coefficients of a complex structure. 

is that large structures may be analyzed without the necessity of inverting 

large matrices. 

The advantage of this method 

Par t  B describes Lanczos' method for obtaining eigenvalues and eigen- 

vectors of large matrices. This method has the ability to extract the eigen- 

values and associated eigenvectors even when the eigenvalues a re  extremely 

close together o r  a r e  in fact multiple, as well as when the eigenvalues cover 

a large spread. The digital computer program for Part B on the IBM 7090 

computer is included in this portion of the report. 

Par t s  

Part C i s  

A and B. 

a sample problem incorporating the 
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PART A 

STRUCTURAL ANALYSIS OF COMPLEX REDUNDANT STRUCTURES 
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SECTION I - INTRODUCTION -- --- 

The structures of aerospace vehicles, of which the Saturn is a prime example, 

a re  often large and usually statically indeterminate. Those structures which can 

be idealized by an assemblage of oiie o r  two dimensional elements may be analysed 
by either the flexibility matrix method o r  the stiffness matrix method. Because of 

the large number of elements and the relatively small number of redundant forces 

in vehicles of the Saturn type, the flexibility matrix method is preferred. Also, 

the numerical problem of inverting large matrices is eliminated. 

This report develops a method of obtaining the flexibility matrix of such 

structures by elastically coupling redundant component structures into a complex 

structure. Although this cmcept is not novel(" 2) ,  it is felt that the detailed ideas 

which make this method practical have not been sufficiently explained. Therefore, 

the method is rederived and particular attention is given to definitive statements 

regarding the nature and method o€ calculating the internal force influence matrices 

which a r e  obtainable from equilibrium conditions , and which transform external 

unit applied loads o r  redundants into forces on the component structures or into 

internal forces on their structural elements. This includes axis transformation 

for elements in three dimensional space and an organized method that categorizes 

the various force influences, so that the force influence matrices that a r e  the 

TkouplingTT matrices a r e  easily understandable and calculable. This latter method 

is given in Section 111, "Statically Indeterminate Coupling of Redundant Components 

of a Complex Structure. IT The practical application of the method makes the use of 

digital computers mandatory to perform the various matrix operations. The input 

data is in the form of the force influence matrices and flexibility matrices of stand- 

ard structural elements. Novel idealizations a r e  often possible which yield flexi- 

bility matrices that allow superior representations of the compatibility o r  equi- 

librium conditions where structure elements join. Therefore, the method is set 

UP in such a way that any new element force and flexibility matrices can be used 

as  they a re  calculated, without having to modify the basic digital program. 

The redundant - internal force - and deflection influence coefficient matrices 

a r e  derived, using the equality of internal and external work of deformation. 

2 



A procedure suggests itself which will permit the build up of the matrices of 

extremely complex structures from solutions of statically indeterminate struct- 

ural subdivisions of reasonable complexity, requiring only the inversion of small 

matrices and various elementary matrix operations. The matrices involved a r e  

flexibility matrices of the simplest structural elements comprising the components, 

and internal force influence matrices. 

3 



SECTION I1 - FLEXIBILITY OF STRUCTURAL ELEMENTS ~ 

A. THE BEAM ELEMENT FLEXIBILITY MATRLX - - ~ _-__ 

The cantilevered beam element with two axes of crDss-sectional symmetry 

is assumed to be the smallest basic element of that part  of a structural network 

consisting of beams. 

forces applied at i ts  f ree  end is expressed by i ts  flexibility matrix, which is the 

matrix of coefficients y of the generalized forces in the expression of 

The static deflection response of such an element to unit 

C am1 
L J 

the deflections: 

The calculation of the elements of [ Ylm] is based both on the Principle 

of Virtual Work and the assumption that the internal stresses and strains are 

linearly dependent, on the basis of the engineering beam theory. 

- 4 

Figure A-1. Beam - Rod Element 
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Figure A-1 shows a beam element @ - @ fixed at its origin and free - 
at point . The coordinate system coincides with the axes of symmetry. The 

six degrees of freedom of point @ corresponds to the six components of {F,} 
shown in the figure. Thus 

{Am} = 

and 

U 

V I: F'w 
where A =  deflections 

A' = rotations 
F =  forces 

F' = moments 

The cross-section properties at any point along the length of the beam 

are: 

Au = effective shear area loaded by FU 

4. = effective axial area loaded by Fv 

effective shear area loaded by Fw 

moment of inertia about the u axis 

torsional moment of inertia about the v axis 

moment of inertia about the w axis 

= 

= 

= 

= 

IU  

IV 

IW 
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The non-zero elements of r 1 yQm ]are: 

ds  =jo 5 
1 2 

L 

+ -- 1 ds 
GAW 

0 

sds 
- - Y w '  EIU 

0 

=IL ds 
EIW 

0 

All other elements are zero. 

Since practicality is of prime importance, it is recommended that the 

indicated integrations be performed by assuming that the elastic properties vary 
linearly between each pair of given numbers of point on each beam segment. The 

expanded form of Eq. (A. 1) is thus 



B. 

ywl, 0 0 0 0 YW'W 

THE ROD ELEMENT FLEXIBILITY MATRM 

A rod has only one degree of freedom, that of elongation of one end with 

respect to the other. If the beam element of Figure (A-1) is considered with 

only that degree of freedom, i. e. , Av , then the flexibility of the rod is yvv. 

Thus 

Y w F v =  Av 

P L  
where ds 

0 

However, in the case of interaction of rods and shear panels, it is important 

to include the deflection of the rod due to unit value of an applied constant shear flow 

(Figure A-2). 

Figure A-2. Rod with Constant Shear Flow 

The value of the deflection due to unit shear flow, where the subscript V" 

applies to the shear flow, is 

L 

Yvv" =i 
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Maxwell's Law of Reciprocity requires the existence of the term yV/k = yVV/i. 

This is a generalized deformation due to the application of a unit end load, o r  other- 

wise interpreted, it is the work done by the unit shear flow as  it displaces through 

deformations caused by the unit end load. 

The corresponding diagonal term, yv/%// , is obtained by considering the 

applied load to be a unit shear flow and calculating the virtual work caused by that 

load. 

Then 

(A. 4) 

This is the work done by the unit shear flow a s  it moves through the de fom-  

ation caused by it. 
Thus 

r - 

where 

i =  u ,  v o r w  

(A. 5) 

C. THE SHEAR PANEL ___-I_-- FLEXIBILITY MATRIX 

Some two dimensional elements in the form of skin panels o r  beam webs can 

be assumed to carry only pure constant shear flow (Figure A-3). 

Figure A-3. Shear Panel 

8 



The shearing deformation for  a unit shear flow is given by: 

If the panel has a rhomboid shape (Figure A-4), the skewed coordinates demand 

adjustment in this value according to the theory of elasticity. 

I 

I 

Figure A-4. Rhomboid Shear Panel 

The flexibility is thereby increased and the value of the shearing deformation is then 

2 (l+ - cot 9) yqq - Gt E 
ab - - 

where E = Young'smodulus 

G =  shear modulus 

CE = angle of midline with respect to the side of the panel 

The complementary strain energy is thus 

D. ---- FLEXIBILITY MATRICES OF ELEMENTS -_ OF OTHER SHAPES 

The flexibilities of rod and beam elements with various simple variations of 
cross  section properties a r e  given in Reference 3. The trapezoidal quadrilateral 

shear panel flexibilities are usually approximated by assuming equilibrium to be 

satisfied by suitably adjusted uniform shear flows on the edges. 

Some of these approximations also appear in Reference 3. However, i f  a 

trapezoid is swept, similar to a rhomboid shape shear panel, the effect of this 
sweep must be incorporated by increasing the flexibilities, through the factor C, 

involving E, G and the average angle of sweep (2: 

c = (1+4F cot2@) 

9 



SECTION I11 - STATICALLY INDETERMINATE COUPLING OF REDUNDANT 
COMPONENTS -_-- OF A COMPLEX I---- STRUCTURE -~ 

In previous consideration of the analysis of statically indeterminate structures 

(3) internal forces were calculated which were caused by externally applied forces 

and redundants, respectively, on the cut (and thus statically determinate) structure. 

The concepts used a re  extended to the calculation of influence coefficients of complex 

structures consisting of statically indeterminate component structures, coupled so  
that redundant forces exist at the boundaries between the component structures. 

A. ANALYSIS O F  COMPONENT _ _ _ _ _ _ ~  STRUCTURES 

1. 

_ _ _ _ _ - _ ~ -  

Basic Concepts for Solution __ _ _  - __ of - Component Structures -- 

The structure is assumed to consist of interconnected elements in which 

the internal forces a re  statically determinate when sufficient cuts are made to remove 

redundancies (Figure A-5). 

flexibility influence coefficients. 

the deformations of the elements caused by applied loads. 

is assumed, permitting application of the superposition principle. 

Their individual idealizations permit the calculation of 

These influence coefficients are used to calculate 

Linear structural behavior 

Figure A-5. Removal of Redundancies Through the U s e  of Cuts 

10  



Each element admits only a limited number of forces and corresponding 

kinematic motions. Examples a r e  the slope and deflection of one end of a canti- 

lever with respect to the fixed end caused by unit moments and shears. The deform- 

ation of the elements, with respect to their individual datums, a r e  easily calculated 

by multiplying the matrices of the inffuence coefficients 1 y ] of each of the elements 

by the force vector representing the forces { F ] sustained by it. These forces are 
due to external loads acting on the element o r  the internal forces due to load transfer 
between elements in the cut structure. The latter (e.g., shears and bending moments 

in a beam), can be determined of course from equations of static equilibrium of the 

structure that has been cut at all points of redundancy so that these internal forces 

are expressible in terms of the applied and redundant forces. The contributions to 

the internal forces from these two sources a re  expressed separately by the matrices 

[ o! ,h] and [ 8 
unit load applied at h. Thus, when [ %h] is multiplied by the extel-lhal forces { Ph] , 
the resulting values a re  the internal forces { Fmh] at interconnection points or  load- 

ing points m. Thus, 

- 

3 . The elements [ cymh] are the internal forces at m due to a 
mq 

Similarly, there a re  the internal forces { F 

The columns of the matrix [ /3 
mq 

of the redundants { X  ] at q. Therefore, 

3 caused by the redundants { X  . 
] a r e  the internal forces at m due to unit values 

mq q 

q 

The total internal force is 

(A. 10) 

(A. 11) 

A propped cantilever beam,loaded at two points, is shown in Figure 

A-6. The beam is broken up into two elements and a cut is made between the 

beam and the flexible support. The internal shears v1 and v2, the moment m2, and 

the support force p are the forces transformed through %h and B shown below. 
mq 

11 



Thus 

t p2 

L 

1 0  

1 1  

a1 O 
0 0  - - 

I n I I 

1 

= [i1 

2 V 

+ R 2  . - / -  % -+ f x1 

1 f' 
Figure A-6. Internal Forces in a Redundant Beam 

Methods for finding { X 3 
4 

and thus { Fm] will now be obtained by 

considering the equality of the internal ana external work of the structural deform- 

ation s. 

2. Internal Work 

The internal work of the structure is obtained by summing the contrib- 

utions of each element to that work. Only the work of the internal and external 

forces in and on an element relative to the element datum will be used to find the 

1 2  
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internal work. Actually, the absolute displacements, which are the sum of the 

datum and the relative displacements, could be used to find the work but the 

contribution of rigid body motion is zero because the complete force system on 

each element, including the reactions at its datum, is in equilibrium and the work 

required for a rigid body displacement of a system of forces in equilibrium is 

equal to zero. 

The deflections of an element relative to its datum are 

(A. 12) 

It is to be understood that, physically, R and m may represent the same o r  

different degrees of freedom; R can be a deflection o r  a rotation type deformation 

and m can be a linear o r  a moment type force. 

The structure is assumed to behave linearly and therefore the internal 

work Wel, the product of these forces and the deflections, is given by 

(A. 13) 

Substituting Eqs. (A. 11) and (A. 12) into (A. 13) 

(A. 14) 

The total internal work in the structure is the sum of the work contrib- 

utions of the elements: 

where 
n = number of elements 

13 

(A. 15) 



r' 'h 7, 
Now -( X- , will be common to all expressions of internal work for 

a * 
all structural elements such as Eq. (A. 14), provided [ 0 

organized to have columns corresponding to every P and X sustained by the 

structure, even i f  some of these forces have zero influence. The sum of the 
I internal works, Eq. (A. 15), is obtained by providing enough rows in [%,I I [fimq]] 

and [yAm] so that all internal forces in the component structure and their flexi- 

bilities are  represented. 

3 and [ /3 mh mq 
] are  

h q 

[ 

The deflections of a structure consisting of two elements would be: 

o r  

L o  1 

i+ 1 Yam --I 1 
Note that the elements in the ith set of rows of [ cymh] must therefore 

be the values of the internal forces in the ith element due to unit values of external 

loads { Ph] applied anywhere on the cut, statically determinate structure. The 

elements in the ith set of rows of [S ] a re  similarly the internal forces in the 

ith element due to unit values of the redundants {X 3 . mq 

q 
The internal work is one half the product of the internal forces and the 

deflections. This work in two elements is: 

- - 
wel. + weli+l 

1 T T 

5 [Fm Am + Fm i+l i i  

wint 1 

1 - - 
i+l 'm 

14 

(A. 17) 



8 
' 8  
l8 
I 8 

8 
8 
8 
8 

'I 

But 

Thus, for two elements, 

r T i  

(A. 19) 

in which various brackets and braces of the notation in (A. 18) have been deleted for 
clarity. Each of the letter symbols now stands for the corresponding matrix. 

Generalizing this to any number of elements, the total internal work is: 

which has the same form as Eq. (A. 14), but gives the generalized expression of 

internal work for the whole structure through the foregoing definitions of [ ad ] 

and [ 8 mq ] and by designating [ y 3 to be a square, symmetrical matrix whose 

elements are uncoupled flexibility matrices of the elements along the diagonal, such 

as that in Eq. (A. 19) above. 

k?m 

3. - External Work 

The external work is expressed by summing the work of the external 
forces as they move through their displacements. It will be helpful to use the 

tr ick of "adciing zero" in the derivation of the expression of the equality of internal 

and external work, so that terms involving the redundants in the accompanying matric 

equations may be understood. 

15 



The concept of an external force can be generalized to include the 

redundants which are applied to each side OP a ’’cut” face, equal and opposite to 

each other. Compatibility of the cut faces requires that each side of the cut face 

move through the same absolute displacement. The external work of the redundants 

is therefore equal to zero because they a re  each equa1 and opposite forces, represent- 

ing a zero vector, moving through some displacement with respect to an absolute 

datum. Addition of the “external workff of the redundants of the total external work 

is therefore adding zero. 

The cut points and others which are loaded with external known forces 

also move because of the influence of the loads on them and the forcing of compati- 

bility by the redundants. Then i f  the structure is cut so that all forces within it are 
statically determinate with respect to externally applied forces and the redundants, 

the resulting deflections are expressed through means of a flexibility matrix [ c ] 

referred to some common absolute datum for the structure. It is desired to obtain 

the displacements at the externally loaded points with respect to this datum. They 

are calculated from an equation, such as 

(A. 21) 

in which { A  3 are  the deflections of the externally loaded points, g,  and [ c 3 is 
the flexibility matrix of the cut ,  statically determinate structure. The subscripts 

g and h pertain to applied loads o r  corresponding degrees of freedom at their points 

of application, a d  p and q pertain to redundants o r  the corresponding degrees of 
freedom at their points of application. Thus the partitions c and c are the g 

deformations due to unit values of forces Ph and X 

g 

gh gq 
respectively. 

f >  cl’ 
Consider the displacements i A  } ofbne of the two faces of each cut. 

(a) 
They can be similarly expressed as: 

for the faces (a). For the faces (b) they would be: 

& 
I 
c 
B ’  

1 
8 
8 
3 
1 
3 
1 
1 
SI 
I 
B 
8 
$ 
8 

I I 



8 
I 
8 
8 

The relative deformations of (a) and (b) a re  the differences. Thus 

The relative displacements of the cut faces can be expressed, a s  was done for 

the load point displacements, as 

t 
8 
I 

8 
8 
I 
a 
t 

(A. 22) 

in which 

and 

which shows the use of the primed and double primed matrices of Eqs. (a) and (b). 

The total work of the forces is given by the sum of the products of the 

forces and their displacements. Remembering that { A  3 is defined as the relative 

displacement vector o€ the cut faces, then the toL& external work ( i f  { 

equal to zero) is 

P 
were not 43 

T T 

wext - - ' 2 -  [{'h) {Ag)  + {xq} {'p)] 

o r  

(A. 23) 

L - J  

Substituting Eq. (A. 21) and (A. 22) in Eq. (A. 23) gives 

17 



Now, recalling the expression of internal work, Eq. (A. 201, and 

setting 

- 
Wext - Wint 

there results, as shown in Appendix A: 

(A. 25) 

A means of calculating [ c 1 has thus been found. The values of the 
redmdants and the deformations of the compatible structure remain to be found. 

The internal forces can be obtained from Eq. (A. 11) once the redundants are known. 

It can be seen from Eq. (A. 21) that if all the values of { X 1 for every 
separate application of a unit external load at point h were hown,  then the values 

of { A ] for any such unit load would form, by definition, one column of the external 
flexibility influence coefficient matrix, i. e. , that the resulting deflections are caused 

by a unit force applied to the structure at h, and in which compatibility is enforced 

by corresponding values of { X ] . 
To find these values of { X ] , the relative deformations { A  

cy 

g 

4 
] in Eq. cl P 

(A. 22) are set equal to zero, i. e. , for compatibility of the cuts: 

Then 

Therefore -1 

(A. 26) 

Substituting this result in Eq. (A. 21), gives the deflections of points 

I 
=LCgh I I 

c 18 .J 

(A. 21) 



Thus 

Let 

Then 

-1 7 
'ph 1 LYgh 3 = I C g h -  'gq 'pq 

(A. 27) 

(A. 28) 

(A. 27a) 

which shows that [ y 3 , according to cfinition is the flexibility influence 

coefficient matrix of the redundant structure with respect to its own datum. 

The internal forces {F,] can be calculated for unit values of the 

applied forces {Ph ] . The result is the internal force influence matrix rfmh]. 

Substituting { X ] of Eq. (A. 26) into Eq. A. ll), 

{Fm} = ["mh/ 8 , q I  [yp?T-p-] Ph h 

{Frn} = ["mh-#rnq 'pq -' ph 1 i P h )  

gh 

q 

Thus 

Let 

Lfmh1 = r"mh-'rnq C pq -l c ph ] 

(A. 29) 

(A. 29a) 

which defines rfmh 3 as the internal force influence matrix of the uncut redundant 

structure. 

4. Summary 

Due to loads at points (h): 

The redundants are 

The internal forces are 

(A. 30) 

(A. 31) 

19 



The deflections are 
- 

{ A g l  = Lcgh - c  gq 'pq -1 ph 1 iPhj (A. 32) 

It should be kept in mind that for  certain structures consisting of 

many elements joining in few points it may be advantageous to obtain [ y 

by inverting the stiffness matrix of the structure, which in such cases may 

be more easily obtainable (References 4 and 5). 

] gh 

20 
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B. ANALYSIS OF A STRUCTURAL COMPLEX 

The method of solving statically indeterminate structures has been 

summarized previously in Eqs. (A. 30) through (A. 32). The method can now 

be extended to cover a class of structures that consist of statically indeterminate 

modules interconnected in a statically indeterminate way. It is proposed that 
through such a concept any extremely large structural complex can be solved 

by analyzing the properties of component structures, chosen at convenience, 

which may themselves be statically indeterminate, and coupling them through 

the satisfaction of equilibrium and compatibility conditions at their points of 

physical interconnection. The generalized relationships which lead to the 

expression of the interconnecting matrices will be developed, and as will be 

seen, the concepts that were used to develop Eqs. (A. 30) through (A. 32) a re  

also applicable here. Furthermore , although this may be an extreme 

generalization, it can be seen that the properties of the statically indeterminate 

component structures may themselves have been obtained from a further break- 

down into statically indeterminate sub-modules and a subsequent synthesis of the 

component structure through the compatible interconnection of these sub -modules. 

This can be continued ad infinitum, conceptually producing the picture-within-a- 

picture -within -a -picture effect . 

The method will be developed assuming statically indeterminate com- 

ponent structures, interconnected in a statically indeterminate manner. It will 

subsequently be shown that the specialized terms of the various matrices are 
for structures that have component structures and interconnections that are 
statically determinate. 

1. Forces on the Component Structure 

The above title suggests that the forces on component structures might 

have different sources. This is indeed true. The correct generation of the 

corresponding force influence matrices is dependent upon the proper classification 

of the force sources and their effects. 

because they extract the local force from the generalized loading matrix. These 

matrices a re  generated from the equations of static equilibrium, somewhat 

They are so-called ffextractorff matrices, (6) 



similarly to  the calculation of Dmh and f i  for  the elements of the component 

structure. It is the use of these force influence matrices that distinguishes this 

approach from that of Argyris, (2) in which the internal element forces of the 

connected component structure are used to obtain the work in the components of 

the complex structure. The use of the new statically obtainable force influence 

matrices is obviously much simpler to  understand as well as to actually implement. 

mcl 

A datum is chosen for  each component structure so that the reactions 

there are statically determinate. At these points, each component structure is 

joined to another one. All other points on the component represent points where 

arbitrary loads can be directly introduced. Quantities at these points are 
designated by the subscript gi, where g designates the degree of freedom at 
a point, e. g. , a rotation or  deflection, and i stands for the interior nature of 

the point, it being within the boundary of the component or  on the boundary, 

but not connected to other structures there. 

the senses of these degrees of freedom a r e  subscripted with h.. For example, 

the numerical designation in an actual analysis of the deformation g 

may be a rotation, would be the same as that of the moment h 
in the same location. 

The forces which correspond to 

1 
which 

if it were applied 
i' 

i 

Figure A-7. Typical Load Points gi, hi on Component Structure 

The points which represent the statically determinate connection of 

other component structures (i. e. , their datums) to the presently considered 

structure are called g At these points the negative of the reactions of the 

other components to external loads applied at any point k are introduced (Fig- 

ure A-8). The subscript b stands for  boundary between component structures. 
At  such points, external forces P may be applied with the same sense as the 

corresponding deformational degrees of freedom there. 

b' 

hb 

2 2  



Reaction forces 
for Structure B - 

Figure A-8. Typical Load Points gb 

The third type of point is that at which the statically indeterniinate 

coupling forces a re  introduced. These are called gt (Figure A -9). These points 

may be externally loaded, which loads a re  designated Ph . 
t 

Beam 

Figure A-9. Redundant Connection of Two Structures 

23 



In summary, the point nomenclature is as follows: 

= Pertains to deformation degree of freedom g at 
a point within o r  on boundary of the structure 
designated (c). 

= Pertains to deformation degree of freedom at 
points of statically determinate connection of (c) 
with other component structures, datum of (c) 
excluded. 

= Pertains to deformation degrees of freedom at 
points of connecting redundant application on 
structure (c). 

(c) 
g i 

(c) 
gb 

(c) 
gt 

Similarily, the corresponding force nomenclature substitutes h for g 

in the subscripts, other items being held equal so that hi 

to  forces corresponding in sense and location to their deformation counterpart 

at gi  9 gb and gt , respectively. 

, hb , ht pertain 
(c) (c) (c) 

(c) (c) (c) 

It should be noted that the symmetry of the influence coefficient matrix - - 
I I 
LYgh ~ (Eq. A.28)  actually shows that g and h can be used interchangeably. 

Having dealt with the force and deformation designations for a com- 

ponent structure, it will now be important to  find a nomenclature for the general 

degrees of freedom and corresponding forces applied anywhere on a complex 

assembly of component structures. The reason is that we want to describe the 

response of the complex structure to applied forces in the same way as the re- 
sponse of the component structure was described. This is to say, it is desirable to 

talk about the degrees of freedom of points that a r e  externally loaded and the degrees 

of freedomof redundant interconnections separately. Therefore, the following 

definitions are given 

a. Deformation Designations of the Complex Structure 

The following subscripts describe the nature of subscripted 
quantities: 

I 

I 
Ir 

IC 
11 
8 
1 
I 

n = Pertains to generalized deformation degrees of 
freedom anywhere on the complex structure, ex- 
ternally loaded o r  at which flexibility influence 
coefficients are required. They include those 
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designated h. and h on the component structures. 

Excluded a r e  those which correspond to redundants 
existing at the boundaries between component struc- 
tures. 

s = Pertains to deformation degrees of freedom of the 
points at the redundant cuts existing between com- 
ponent structures. These degrees of freedom have 
a subclass, designated by s which a re  those ex- 

ternally loaded by forces of the same sense and 
location as the corresponding degree of freedom, 
o r  at which flexibility influence coeflicients are 
desired. 

1 b 

P’ 

18 
8 
8 

8 
I 
8 
8 
I 
8 
8 
1 
8 
8 

b. Loads on the Complex Structure 

k, t = Pertains to forces corresponding in sense and location 
to their deformation counterparts n and s ,  respectively. 
This means that the forces designated by k are ex- 
ternal forces and those designated by t a r e  the re- 
dundants. The forces designated by t 
to s 
connecting redundants with the sense of the correspond- 
ing degree of freedom. Their positive direction is 
the same as that for all other externally applied loads 
which have the same sense. 

corresponding 

are  externally applied at the location of inter- 
P’ 

P’ 

Using these definitions, a transformation matrix can be con- 

structed which will express the forces applied to a component structure in terms 

of the forces applied to the complex structure. 

The loads Ph on the structure of Figure A-10 due to forces at 
i 

the general points are expressed through the transformation matrix [ ahik] as 
follows: 

J. 

where h. are points on the component structure and k a re  all the points on the corn- 
plex structure where forces a re  applied, o r  for which influence coefficients are to 

be computed. 

1 
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c .  Illustrative Example of Iahikl 

The loads on the boundary, directly applied, for the structure I 
of Figure A-10 are described by the matrix cahik] in terms of the loads {Pk} , 

which is the complete load matrix for the complex structure. 

Figure A-10. Structure Loaded by Forces at hi 

0 0 1 0  
Iahikl I = 0 0 0 1  

('4 J 
so that { 'h i I  1 = [ ahik]I {'k} 

Thus 

{::} I - - [o 0 O 0 0 0 1  1 I'l) 
p4 
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For the strucb 

r 

re 11 of Figure A-10: 

Thus 

= lg 0 
1 

0 
0 

Collectively we can thus write 

p3 

p4 '1 
The forces P have three possible sources as illustrated in 93 

Figure A-11. First, there are the reaction forces at % due to unit values of 
r -I 

forces anywhere at k which form the matrix k b k ]  . Next, there a r e  reaction 

forces at 4, due to unit values of forces of type t These are given by 
D P' 

- I- 

The third contribution to Phb is the set of reaction forces at  due to unit values of hb 
redundants at t. The matrix expressing these relations is b4,t]. The loads 

on the structures from these three sources a re  the sum of their influences: 
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P 

COUPLED STRUCTURES 

1 
8 
8 
I 

. Datum for Structure  II 

I 
a 
1 

'k 

FORCES AT % DUE TO LOADS Pk 

ON THE COUPLED STRUCTURE 

P 

FORCES AT hb DUE TO 

REDUNDANTS Xt 

bP 
FORCES AT hp DUE TO 

LOADS Pt 
P 

A-11. Loads on hb Points of Coupled Component Structures  

1 
1 
1 
1 
I 
I 
I 
1 
1 
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I 

I 
I 
8 
11 
I 
8 
I 
8 
I 
8 
8 
8 
8 
I 
1 
8 
8 
8 

Finally there are forces at ht due to forces Ph applied on - one 

- side of the cut face that belongs to the presently considered component structure, 
t 

and th.ose caused by unit values of the redundants between component structures. 
r l r  > r \ 

The first a re  given by 1% 
in Figure A-12. 

Figure A-12. Forces at  ht Due to Applied Loads and Redundants 

Caht t P  

7 - 

h s d 6  7 

5 

9 

5 6 7 8 9  

1 0 0 0 0  

9 

5 6 7 8 9  
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Thus 
0 

0 1 0 

I 
I 
I 

I 
I 
I 
I 

1 [ I 1  
f 

x8 

x9 

l x 9 i  

I 
I 
1 

In summarizing these descriptions , the loads located at  various 

points of the complex structure, cut so that component structures are  inter- 

connected in a statically determinate manner, cause forces on any particular 

component structure (c) which can now be expressed in the matric equation 

(A.  33) 



I 
I 
I 
1 
I 
8 
1 
8 
8 
8 
1 
8 
1 
I 
8 
8 
8 
8 

in which the [a] matrices are the forces caused by unit applied loads and [b] 

are forces due to unit connecting redundants. More briefly stated: 

- Force on h .  point due to unit load at k. a 

““bk = Force on hb point due to unit load at k. 

vp = Force on hb point due to unit load at t 

hik - 1 

P‘ 

ah t = Force at h point due to unit load on t point. 
t P  t P 

bhbt = Force on b, point due to unit connecting redundant at t. 

= Force on ht point due to unit connecting redundant at t. 
b h t  

Let the point designation be generalized so that 

i = Location of n and s points 
P 

= Locationof k and t points 
P j 

that is, i and j designate all points where flexibility influence coefficients are 

calculated so that, for example, 

Then we can let 

(A. 34) 

(A. 35) 
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and 

bhit = COI 

htt b 

(A. 36) 

Where h now stands for the points hi, %, ht for which the flexibility matrix 

on a particular component structure (c) are: 

is known from the analysis of each component structures. Then the loads 
ygh 

(A. 37) 

2 .  The Work of Component Structures 

The development of a solution for component structures resulted in 

a method for calculating the component structure flexibility matrix r 1 
according to Eq. (A.28). The matrix is initially calculated in the desired 

arrangement o r  may be suitably rearranged, so that it is partitioned according 

to the point categories hi, h,, ht previously defined. Actually this is necessary 

only for clarity of the derivation. Then the deflections relative to the components 

datum are: 

ygh (c) 

I 
I 
I 
1 
I 
1 
1 
I 
I 
I 
I 
I 
1 
1 
I 
1 
1 
I 
I 



I 
I 
I 
I 
8 
8 
I 
8 
I 

o r  

Ygbhi I Y  gb% I I ygbhtl 
I 

'h i 
- - -  

(A. 38) 

The work in the component structure is 

(A. 39) 

The work increment due to rigid body motion of the component struc- 

ture as it displaces due to motion of its datum is zero because the applied forces 

and the datum reactions are in equilibrium. Therefore, Eq. (A. 39) gives one of 

the components of the total work in the complex structure. 

Substituting Eq. (A.37) in Eqs. (A.38) and (A.39),  there obtains 

(A. 40) 
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in which 

3. The Work in the Complex Structure 

The work in the complex structure is the sum of the works of the 

components, as given by Eq. (A.40). Thus, for (N) component structures: 

N 
7 

Wint = z w(c) 
c= l  

- 1 

r 

(A. 41) 

The external work of the complex is calculated as was done for the 

individual component structure. Assume that a flexibility matrix [ 6 3 of the 

complex structure exists. The deflections of the external points i are: 

I 
{Ai) = [6.. I bit] 

lJ I 
(A. 42) 

Similarly, the relative deflections of the cut points of statically 

indeterminate interconnection are 

I 
I 
8 
1 
8 
8 
1 
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8 
I 
8 
t 
8 
8 
0 
8 

8 
1 
I 
8 
1 
I 
1 
I 
1 
I 

e 

Then let the matrix 

so that / \  

{A} c = [6]{---} 

L J  
The external work is 

L J  
so 

- 
wint - wext Now 

Let 

and [%I= 

35 

(A. 44) 

(A. 43) 



Substituting [A] and [B]  in Eq. (A.41) and comparing with Eq. (A.44) shows 

r 1  

(A. 45) 

Compatibility requires that the relative deformations {As} are equal to zero: 

-?A S } = [6 SJ . ]  {P.} J + pst] {X,} = 0 (A. 46) 

Therefore 

(A. 47) 

Substituting {XJ in Eq. (A. 42) gives 

o r  

Let 

Then 

6 s j l  i p j  1 I A i )  r = [bij - 6, 6st - 1  

[yij] = [6ij-6it 6, -1 bSj] 

(A. 48) 

(A. 49) 

(A. 50) 

7 which shows that [yij J is, by definition, the flexibility influence coefficient 

matrix of the complex redundant structure. 
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Let 

I Then the components of LYij J in Eq. (A. 49) are obtained from Eq. (A. 45) and 
the substitution of the new terms for AT, BT. Thus 

[Ahj 1 
[Bht 1 

i% 1 
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C. SOLUTION SUMMARY 

1. Complex Structure 

a. Coupling Redundants 

b. Forces Applied to Component Structures 

Substitution of Eq. (A.47) in (A.37) 

r 7 

c. Displacements 

(A. 47) 

(A. 51) 

(A. 50) 

2 .  Component Structure 

Substituting {Ph) of Eq. (A. 51) in Eqs. (A. 30), (A. 31), and 

(A. 32), all internal forces in the component structures can be obtained. 

Let 

-1 
C 

p4 Ph 
x = - c  

s h  

(See Equation (A. 30)) 

-1 
x t j -6st 'sj 

(See Equation (A. 47)) 

6sj 1 -1 
f hJ . = [ahj - bht hst 

= [%j + bht Xtj  1 
(See Equation (A. 37), (A. 47) ) 
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(A. 53) 

(A. 54) 

I 
B 
8 
1 
I 
1 
1 
1 
1 
1 
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I 
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I 
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I 
I 
I 
1 
I 
I 
8 
8 
8 
I 
I 
8 
I 
1 
I 
4 
8 
8 

or 

I - 
fmh - k m h  + c3mq Xqh 

(See Equation (A.31)) 

(A. 55) 

Then combining Eqs. (A. 52) and (A. 54), we obtain component redundants due 

to unit applied loads as 

xqj = Xqh fhj (A. 56) 

Similarly combining Eqs. (A.54) and (A.55) results in mternal forces 

due to unit applied loads 

(A. 57) - 
fmj - fmh fhj 

and one obtains the following simplified relationships for the component struc- 

ture: 
Component Structure Redundants 

(See Equations (A. 3 0) , (A. 56)) 

Component Structure Internal Forces 

F }=If mJ .1 - {Pj} 

(See Equations (A.31), (A.57)) 

Component Structure Deflections 

(A. 58) 

(A. 59) 

(A. 60) 

The deflection influence matrix Y is obtained by choosing those L g j l  
rows of [ yij] for which i = g. The deflections could, of course, have been 
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obtained by choosing the appropriate values from the complex solution, i.e., 
r .  I - 1  

from -/ Ai 1 , wherever i = g. Formally, the matrix 1Y .A could be obtained 

by multiplying Y 
g1 

by the unit load matrix [fhj ] . Referring to Eq. (A. 54), [ gh! 

D. SPECIAL CASES 

1. Statically Determinate Coupling of Statically Indeterminate 
Components 

When no coupling reciundants X exist, [B] does not exist, as can t 
be seen by referring to Eq. (A. 33).  Following the development of Eq. (A. 45) 

r i  

it becomes obvious that only the matrix isij will remain which is given by 

(A. 61) 

This matrix is also equal to the flexibility influence matrix 

system 

rs.. t- 11 ] = [Yij ] 

The redundants in each component structure are obtained from 

Eq. (A.58) in which I 

!Ja 1, 
[fhj J L hj i 

so that 

(A. 62) 
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I 
e 

The internal forces  follow from Eq. (A.59) in which 

[fmj] = [ fmh][ fh j ]  

= [ f m h ]  [ ahj] 

so that 

-1 
("m} = [ (Ymh - pmq 'pq 'ph][ ahj] { 'j} (A.63) 
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2. Statically Determinate Components 

If the component structures a re  statically determinate, their influence 

coefficient matrices [ y gh -j a re  simply 

(A. 64) 

because 1 8, ] does not exist. (S. D. C. means "statically determinate component". ) 

For the same reason, [ fmj ] = [amh] [ fh j ]  , so that the internal forces are:  

(A. 65) 

In case these component structures a re  coupled statically determinately, 

[ fhj  ] = [ ahj ] , as  before, so  that in this case 

(A. 66) 

3 .  Summary 

The complete solution of a complex structure consisting of statically 

indeterminate component structures that are  attached to each other in  a statically 

indeterminate manner has been found and is summarized in Eqs. (A. 47), (A. 50), 

(A.58) and (A.59). Equations (A.47) and (A.58) allow the calculation of the re- 
dundants of the system in two stages, f irst  the coupling redundants and subse- 

quently the component structure redundants. Equation (A. 50) gives the displace- 

ments of the structure and Eq. (A.59) gives the internal forces in the elements 

of each component structure. The maximum number of redundants at any stage 

of the computations can be taylored to suit by providing a s  many or a s  few com- 

ponent structures as  necessary to limit the size of required inversions, a s  may 

be seen from Eqs. (A. 47) and (A. 58). It can also be seen that the matrix LY 
of each component structure can be obtained by treating it a s  a complex structure 

consisting of sub-components, each of which may or may not be redundant, a s  the 
configuration dictates. 

gh J 

Finally, several special relationships were  given for the cases in which 

the coupling of the components is statically determinate, o r  the components are  

statically determinate, or both. The method presented has, therefore, great use- 

fulness in  those applications in  which the complex structure is extremely large 

42 



I 
1 
1 
I 
I 
8 
8 
1 
I 
I 
I 
I 
n 
I 
8 
U 
I 
I 
I 

and can be clerically handled most easily by assigning a component to each of 

several groups of personnel. Another advantage is that in a large system that 

may contain several hundred redundants, it will  be possible to break the analysis 

physically into subdivisions so that no inversions of matrices larger than a size 

for which good precision can be guaranteed will have to beperformed. 

Even if the structure is statically determinate, the method presented 

will  allow the calculation of the influence coefficient matrix of very large struc- 

tures in easy stages, as was shown in the final Eqs. (A. 64), (A. 65) and (A. 66) 

dealing with this degenerate case. 
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APPENDM A - PROOF OF EQUATION (A.25) 

To prove: 

From Eq. 

Let 

Then 

L\Rni Camh t ‘ I  8mq 

(A.20) and (A.24), 

Subtracting equal quantities from both sides: 

[L’] [c - d T y d l  [L 1 = 0 

but L S O  

T therefore c = d y d  

or  
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APPENDIX B - AXIS SYSTEM TRANSFORMATIONS OF FORCE 
AND DEFORMATION VECTORS 

Suppose a structural element to exist with orthogonal principal axes XI‘’, 

y”’, z”’, oriented arbitrarily with respect to  a common Cartesian coordinate 
system as shown in the following sketch. 

Arbitrary Location of Triple Prime Axis System with 
Respect to Common x, y, z System 

Let it be so oriented that the direction cosines of the XI’’ axis are given by 

4 m and n respectively, being the cosines of the angles between the xN/axis x’ x’ X’ 
and the x, y,and z axes. Similarly L m and n are the direction cosines of 

the angles between the y”’ axis and the x, y, and z axes, respectively. The 

subscripts z refer to similar quantities pertaining to location of the z axis. 

Thus it can easily be seen that the transformation of forces from one axis sys- 

tem, x’”, y”’, z”’ to the common Cartesian system is obtained by the matrix 

multiplication 

Y’ Y’ Y 
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Z 
R R 

m m 

n n 

Y 

X Y 

X Y 

Z 
m 

n 
Z 

("' FZ 

Forces and deformations which a re  alike in sense and direction transform 

in the same way, thrc 

we let 

xgh the previously shown direction cosine matrix, in which 

m m m 

n n n 

X Y Z 

Z X Y 

Methods for obtaining the direction cosines a re  straightforward and follow 

It can be shown from the calculation of unit vectors along chosen body axes. 

that this transformation matrix is orthonormal, s o  that its inverse is equal 

to its transpose. 

[ T  [ T I  T 

In order to ensure the orthogonality of the T vectors, the following 

orthogonality conditions must be met: 

; i = x, y, z 
1 

i.i J 
Then 1 Vni Vnj  = 6.. 9 

n 

where 6.. = 1; i = j  
'J 0; i +  j 
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APPENDIX C - EXTERNAL TO LOCAL INTERNAL 
FORCE TRANSFORMATION 

1. Transformation from Common into Local Element Axis System 

In the calculation of the influence coefficient matrix of a complex struc- 

ture it will be necessary to transform forces given in the common x, y, z 

coordinate system into those acting along the principal axes of the element. 

Suppose six forces a re  given at the end of the element shown in the following 

sketch. 

\ I  / 

F 
Y 

J 
X 

Prismatic Arbitrariiv TJocated Element Subjected to End Forces 

47 



we arrange the forces which are in the body axis system into two triplets of 

forces and moments. The resulting transformation yields the formula: 

I 
[ O I  ’ I :j Y 

Z 
F 

where[ T] is obtained as previously discussed. 

moment about x”’ axis FLm = 

F = torque about y axis 

F‘ ,// = moment about z”’ axis 

FX/// = transverse shear in x axis direction 

F = axial force in y axis direction 

FZ”/ = 

Y 

Z 
/// 

Y 
shear force in z N /  axis direction 

2.  Transformation of Externally Applied Loads into Internal Element Forces 

The forces at the ends of structural elements that are caused by exter- 

nally applied loads anywhere on the complex structure must be calculated so 
that the internal work in the elements can be calculated. The use of internal 

work in the application of the principle of virtual work for the solution of com- 

plex redundant structures was shown in Section 111. The internal force influ- 

ence matrices occur in two types. One is the matrix whose elements a r e  the 

element forces due to unit values of the applied loads; the other type gives the 

element forces due to unit values of the redundants. 

I 
I 
I 
I 
I 
1 
1 
1 
I 
I 
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N 
I 
'1 i 

The determination of these matrices obviously requires that the struc- 

ture be cut until a stable, statically determinate structure remains. Then the 

internal forces can be obtained from the equations of static equilibrium, which 

involve only the geometry. 

The cutting should be done so that, if possible, the redundants will have 

the least effect on the internal forces in the structure. 

Let [ C y  ] = Influence matrix giving internal forces due to unit values 

[ f l  ] = Influence matrix giving internal forces due to unit values 

of applied load 

of redundant forces acting simultaneously on both sides of 

one cut 

Then the internal forces are: 

where Ph = external forces at h 

X = redundant forces at q 
q 

But 

Thus 

I 

L -J 
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These are the desired internal forces in the principal axis system of the struc- 

tural element. A s  an example, consider the force transformation for a rod 

element 

where { Fg N/ } = { Fy } 
[ Trod = [I m n ]  

I 

I 

[% I 1 ] 

and 1, m, n are the direction cosines of the rod axis (y” ) with respect to the 

x, y, z system. 
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SECTION I - INTRODUCTION 

The results obtained using Dr.  Lanczos' "Method of Minimized 

Iterations" on the sample problems so far attempted indicate it is indeed 

a powerful tool for  the solution of the eigenvalue problem. These results 

show that for the 9 x 9 matrices used for sample problems all nine 

eigenvalues and eigenvectors were obtained to a minimum of five 

significant figures.  
values the method determined the number of multiple eigenvalues contained 

in the matrix. 

For the case where the matrix had multiple eigen- 

I 
I 
I 
I 
1 

Each mass station for a three dimensional structure can have up 

For large vehicles, such as the Saturn, it to six degrees of freedom. 

may be necessary to use in the neighborhood of one hundred mass stations, 

includjng slosh masses, to adequately describe the vehicle. This means the 
matrix for determining the natural modes of vibration would be of the order 

of 600. 

In view of the large number of mass stations required to adequately 

describe large space vehicles, it is necessary to apply the present method 

to a reasonably large problem. 

of a Saturn type vehicle. 

This is being done for a sample problem 

I 
I 
I 
1 
I 
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I SECTION 11 - THE METHOD O F  MINMIZED ITERATIONS 

In dynamic analyses, it is required to know the natural frequencies 

and associated mode shapes of the system. A system may have several 

modes of vibration with the same frequency or ,  at the other extreme, the 

spread of frequencies can be very large. Most practical methods for 

determining the frequencies and mode shapes of large systems break 

down under the conditions mentioned above. 

The design of space vehicles is an example of a system where both 

multiple frequencies and large spreads in frequencies can occur. It is 
necessary to choose a method of analysis which can handle both types 

of difficulties mentioned. The method chosen is due to Dr. C. Lanczos 

(Reference 1) and is called, "The Method of Minimized Iterations. 

method for the solution of the eigenvalue problem 

This 

( A - X I ) x  = 0 

is described below. 

If we consider an nth order matrix A, we know there can a t  most 

be n linearly independent vectors within the n-dimensional space of the 

matrix A. Therefore, a linear identity of the following form must exist, 

bm + g1 bm-l + . . . + gm bo = 0 

where the b-vectors form a set  of base vectors spanning the space of A. 

When the matrix A has n distinct eigenvalues 

n = m  
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However, if the matrix A does not have n distinct eigenvalues then 

1 S m s n  

This case will  be discussed later. 

To show the principle of minimized iterations, we first consider the 

case of symmetric matrices : 

* 
A = A  

* 
where A is the transpose of A and we let  the multiplication of a vector b 

by the matrix A equal b ' 

It is now necessary to establish the linear identity (B. 2). This identity 

0 is approached by choosing a linear combination of the vectors b ' and b 

which makes the new vector as small as possible. 
0 

The linear combination chosen is 

b = b '  1 o - 9 1 b o  

where 06 is evaluated by the condition 

2 (bk - % bo) = minimum 
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1 
I 

Then I 
I 

I 
I 
I 
I 
1 
I 
I 

I 
I 
B 
1 
I 

and 

b o o b  = bo 1 (bo'- b; - bo bo) = 0 

0' i. e., the new vector b is orthogonal to the original vector b 1 

To form b the linear combination chosen is 2 

b = b ; - a  b 2 1 1 - 80 bo 
2 where again the cy1 and Po are obtained from the conditions that b2 be a 

minimum. The new vector b is orthogonal to both b and bl. 2 0 

Forming the b vector we obtain: 3 

but because of the orthogonality of bg to the previous vectors 

(B. 10) 

Therefore, the best linear combination has only three terms and 

every new step of the minimization process has only two correction terms. 

(B. 11) 
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The procedure is continued until a set  of orthogonal vectors is generated; 

When the identity (B. 2) is satisfied 

b m = O  . (B. 13) 

If the matrix A is not symmetric; the procedure is modified in the 

following manner. 

A . The operations are  the same as previously except the dot products are  

formedbetween the ti and bi vectors. The method can be outlined as follows: 

The operations are performed simultaneously with A and * 
* 

b l = b i  - a b o  

b; bo* b:' bo 
(2 0 = *  = 

bo bo 

b; b; by lbo  by bl 
- B o = -  * - - - -  

bo bo 

* * b * = b2 * I  - % b2 - R1 bl 
b 3 = b i - % b 2 - @  1 1  b 3 

etc. 
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I 
8 
1 

Since, the prime indicates multiplication by the matrix A, the 

succession of bi vectors represent a successive set of polynomials. If 

the letter A is replaced by x we have: 

0 bo= 1 .  b 

(B. 15) 

The polynomial generated by this procedure is identical to that 
generated by the procedure known as the "progressive algorithm" of 
Reference (1). The advantage of the method of minimized iterations lies 

in the fact that rounding er rors  do not accumulate. By keeping a constant 

check on the mutual orthogonality of the bi and bi vectors, any lack of 

orthogonality caused by rounding errors are immediately corrected by 

means of the correction term 

* 

b. b. 
b. 

2 3 
F.. = 
lJ b. 

1 

* 
The biorthogonality of the vectors bi and bi leads to an explicit 

solution of the eigenvalue problem in terms of the b. vectors. The 
1 

(B. 16) 
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method by which the bi vectors were generated gives 

* 
Dotting bi with uk we obtain 

If the ui are expanded in terms of the bi then 

b 3 m - 1  m-1 u . = a  b + a .  b + ... + 
1 io 0 11 1 

* 
Dotting the ui with bk gives 

The "norm" of bk is given by Ok : 

* 
crk = bk bk 

(B. 17) 

(B. 18) 

(B. 19) 

(B. 20) 

while the norm of uk is left arbitrary. 

The expansion (B. 19) then becomes: 

(B. 22)  
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where the ui are  the eigenvectors and the b. a re  the vectors generated in 

the method of minimized iterations. 
1 

* 
1 

The u. vectors a re  generated in the same manner 

f f * 
* b i  bl bm-l 

u = - +  p ( ) - + + . . . +  pm-,(u)- 
i uo 1 Y u1 i om-1 

(B. 23) 

When the matrix A contains multiple eigenvalues the complete 

characteristic equations can not be fully established since the multiple 

roots behave as  single roots. In this case, the characteristic equation 

is of lower order than that of the matrix A. 

In order to obtain multiple roots, the following procedure is necessary. 

A starting vector bO1 is chosen and the procedure is carried to completion. 

A second starting vector bO2 is then chosen and again the procedure is 
carried to completion. An examination is then made of the eigenvectors, 

those eigenvectors that a re  identical for every starting vector a re  associated 

with the single eigenvalues. If those eigenvectors associated with a given 

eigenvalue are  different then that eigenvalue is multiple. To determine the 

degree of multiplicity it is necessary to take sufficient starting vectors 

until the identity 

x 1 + % x 2 + a  3 3  x + . . . + a  n n  x = O  

is satisfied, where the x. are  the eigenvectors associated with a given 

eigenvalue for each starting vector. 
1 

(B. 24) 
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SECTION I11 - TEST PROBLEMS USING THE METHOD O F  MINIMIZED 
ITERATIONS 

To test the accuracy of the method described in the previous section 

a simple beam was chosen as a test problem. 

frequencies for a simple beam can be calculated from the following formulae 

(reference (2)). 

The mode shapes and 

n u x  y = sin - a (B. 25) 

(B. 26) 

It was decided to use a nine degree of freedom system, therefore, the 

first nine eigenvectors and eigenvalues were calculated using Eqs. (B. 25) and 

(B. 26). Then using the relationship (Reference (3)) 

(B. 27) 

we can obtain a matrix A ,  the eigenvectors and eigenvalues of which are 

known. 

(B. 26) a re  shown in tables 1 and 2. 

the matrix A was  operated upon to obtain its eigenvectors and eigenvalues. 

The results obtained by this method are  shown in tables 3 and 4. 

The eigenvectors and eigenvalues calculated from Eqs. (B. 25) and 

Using the method of minimized iterations 

A comparison of the exact eigenvalues with those obtained from the 

method of minimized iterations show that the latter agree with the exact 

results to five significant places. These results are excellent, especially 

since the spread between the largest and smallest eigenvalue is approxi- 

mately 7000 : 1. 

accurate to at least five significant figures and in most cases more. 

The eigenvectors associated with these eigenvalues are 
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A test sample problem was devised to test the ability of the method 

to determine multiple eigenvalues. In this case, the same eigenvectors 

were chosen as in the first problem but an arbitrary se t  of eigenvalues 

were chosen. The eigenvalues chosen for this problem are  shown in 

table 2. Again Eq. (B. 27) was used to obtain the A matrix and the method of 

minimized iterations used to obtain the eigenvalues and eigenvectors of 

this A matrix. However, for this problem three different starting vectors 

were used to determine which were the multiple eigenvalues. The results 

obtained for the second problem a re  shown in tables 5 through 8. 

It should be noted the second starting vector was inadvertently chosen 

to be orthogorlal to the fifth eigenvector of the A matrix. The result  of 

this was to make the matrix A seem to be of one order less. For this 

reason, any problem should always be run with two distinct trial vectar2. 

An examination of the results show that for those eigenvalues which 

a r e  distinct the eigenvectors associated with them a r e  identical for every 

trial vector. For the multiples eigenvalues the eigenvectors appear as 
linear combinations of the original eigenvectors. It is necessary to apply 

Eq. (B. 24) to determine the number of each multiple eigenvalue. 

A comparison of the computed eigenvalues with the exact values show 

the two agree within the number of places used. The eigenvectors associated 

with the distinct eigenvalues also show agreement to approximately seven 

places. 
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TABLE 2 

EXACT EIGENVALUES USED IN TEST PROBLEMS 

Simple Beam 

410.6388 x 

25.66495 x 

5.0696208 x 

1.6040597 x 

.65702292 x 

.3168513 x 

.17102844 x 

. lo025373 x 

.06258791 x 
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Multiple Eigenvalues 

7.0000000 

7.0000000 

6.0000000 

5.0000000 

4.0000000 

3.0000000 

2.0000000 

1.0000000 

1.0000000 
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TABLE 4 

EIGENVALUES OBTAINED FROM METHOD 

OF MINIMIZED ITERATIONS 

Simple Beam 

410.6388 x 

25.66495 x 

5.069621 x 

1.604057 x 

.6570229 x 

.3168533 x 

.1710268 x 

.lo02538 x 

.06258738 x 
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1s t Trial Vector 

TABLE 8 

EIGENVALUES OBTAINED FROM METHOD 

O F  MINIMIZED ITERATIONS 

Multiple Eigenvalues 

7.000000 

6.000000 

5.000000 

4.000000 

3.000000 

2.000000 

1.000000 

2nd Trial  Vector 

7.000000 

6.000000 

5.000000 

3.000000 

2.000000 

1.000000 
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3rd Trial Vector 

7.000000 

6.000000 

5.000000 

4.000000 

3.000000 

2.000000 

1.000000 



PART C 

SAMPLE PROBLEM 
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SECTION I - INTRODUCTION 

The method of minimized iterations has been checked using the test problems 

shown in Part B but these a re  for small scale systems. To further check the 

method, the tank configuration shown in Figure C-1 has been analyzed. 

In Figure C-2 is shown the idealized spring mass system which was ana- 

lyzed. Each mass point was considered to have three translational degrees of 

freedom. Influence coefficients required in the calculation of the dynamic matrix 
were obtained using the method described in Part A. With these influence coeffi- 

cients and a corresponding mass matrix, a three dimensional Tree-free" dynamic 

matrix was calculated. The modes and frequencies of this matrix were then ob- 

tained using the method of minimized iterations. 

A s  shown in Figure C-1, the analytic model consists of a lower stage with 

a central tank, four peripheral tanks and an upper stage with a single tank. Each 

tank is described by four mass points. (See Figure C-2.) The lower stage tanks 
a r e  connected by a beam network at the upper and lower ends of the tanks. For 

this analysis the connecting beams are  considered massless but their elastic 
properties are accounted for in the influence coefficients. 
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SECTION II - CALCULATION OF FLEXIBILITY MAT= 

A. DESCRIPTION OF STRUCTURE 

Influence coefficients a r e  calculated fo r  a multiple tank booster system, 

Figure C-1. They a re  calculated for  the three deflection degrees of freedom at 

each mass point, which are defined at four points on each tank centerline as 
shown in Figure C-2. 

The structure consists of five tanks in the main stage and one in the upper 

stage. The main stage tanks rest on a network of beams called the tail spider, 

and a similar spider is employed between the upper and main stages. The spider 

layout is shown in Figure C-3. 

Three of the lower five tanks contain lox. They are connected to each other 

through the beams of the spiders and therefore differential longitudinal expansion 

is accordingly somewhat restricted between them. The two tanks containing fuel, 

located diametrically opposite from each other, can extend freely in the axial 

direction because they a r e  equipped with a sliding connection at the interstage 

spider. The tanks a re  long and slender and are therefore considered to act as 
beams. 

B IDEALIZATION O F  STRUCTURE 

1. General 

The structure idealization is shown in  Figure C-2. The datum of the 

total structure is formed by the four crossing points of the interstage spider. The 
beam sections between these points, which are fixed in space, may bend but not 

extend. The four vertical restraints are shown in Figure C-4. The upper stage 

tank VI11 and the main stage center tank I a r e  cantilevered from the plane formed 

by these points. 

The tail spider is attached to the bottom end of tank I at the four cross- 

ing points, which are assumed to remain in a plane. The beam sections of the 

spider between these points may bend but not extend. The outer tanks are sus- 

pended between the ends of the beams. There are both determinate and 
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redundant connecting forces between the outer tanks and the spiders. These are 
shown in Figure C-5 for lox tank IV, which is typical. 

I 
I 

UPPER STAGE 

INTERSTAGE SPIDER 

MAIN STAGE 

TAIL SPIDER 

Figure C-1. Dynamic Model for Multiple Tank Booster 
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t z  t t i  
t 

VI11 I 
UPPER STAGE 

VI1 
INTERSTAGE SPIDER 

5.96446 

VI TAIL SPIDER D 1 

Note: All dimensions for  lower stage are typical. 
X J 

Figure C-2. Representation of Sample Problem 
a. Idealization of Tank Structure 

74 



I 

KEY 

Directions of Degrees 
of Freedom 

Figure C-2. Representation of Sample Problem 
b. Degree of Freedom Identification 

of M a s s  Points 
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Figure C-3. Spider Beams and Spacers  

X X 
5 1 

7 

Figure C-4. Internal Redundants X of Spiders 
(2 
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Redundant Forces 

J 
X 

tz  
I 1 

I LoxTank IV I 

Figure C-5. Connecting Forces of Tank IV 

Section properties of the tanks, which are assumed to act as beams, 

and the beams and spacers comprising the spiders, are given in Table 9. The 
total mass of each tank is divided into four equal parts located on the centerlines. 
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TABLE 9 

SECTION PROPERTIES 

Tanks 

No. L(in) D(in) t(in) EI(1b-in 2, GJ(1b-in 2, AE(1b) 

6 I 80 10 .025 9 . 8  2x10 7 . 8 6 ~ 1 0 ~  7 . 8 6 ~ 1 0  

6 I1 80 7.07 .032  4 . 4 5 ~ 1 0  3 . 5 6 ~ 1 0  7 . 0 9 ~ 1 0  

111 80 7.07 .020 2 . 7 8 ~ 1 0  2 . 2 4 ~ 1 0  4 . 4 4 ~ 1 0 ~  

6 IV 80 7.07 .032 4 . 4 5 ~ 1 0  3 . 5 6 ~ 1 0  7.09x10 

V 80 7.07 .020 2 . 7 8 ~ 1 0  2 . 2 4 ~ 1 0 ~  4 . 4 4 ~ 1 0 ~  

6 VI11 80 10 .025 9 . 8 2 ~ 1 0  " 7 . 8 6 ~ 1 0  7 . 8 6 ~ 1 0  

Inters tage Spider 

2 
(lb-in ) AE (W 2 EI(1b-in ) Transv. 

7 Beams (all) l o 6  l o 4  .16xlO 

Spacers (all) - - .2xlO 

Tail Spider 

2 
AE(1b) 2 (lb-in ) EI(1b-in ) Transv. 

7 Beams (all) 2 . 2 5 ~ 1 0  l o 5  .75xlO 7 

Spacers (all) - - l o 6  
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2. Redundants Between Components 

Figure C-6 shows the idealization of the outer tank connections to the 

interstage spider. The connections at the tail spider for all four tanks are 

identical to the connections of the lox tanks to the interstage spider. Only the 
upper ends of the fuel tanks have a different type connection which allows free 

axial expansion and small rotations around the x-axis. All other connections 

resist these rotations and develop moments, which a re  selected as redundants. 

As the free expansion of the lox tanks is impeded by the pinned joints at both ends, 

the axial force in  each outer tank is also selected as a redundant. The torsional 
moments in each of the outer tanks form the last set  of redundant forces between 

the components. All of these a re  shown in Figure C-7. 

3. Internal Redundants of Component Structures 

The spiders a r e  the only component structures which are statically 

indeterminate. The axial forces i n  the peripheral spacers are selected as the 

internal redundants X in each spider. 
4 

C. EXPLANATION OF MATRICES 

1. [a] Matrix 

Each of the components is separated into elements such as canti- 

levers, simply supported beams, o r  rods. The elements' ends a re  at the points 

of connection to other elements or at load points. 

The m-designations are provided for the selected internal forces of 

the components. These forces may be thought of as external loads acting on the 

elements into which the components a re  separated. Component I, the middle tank 

of the main stage, is separated into five elements, each cantilevered at the upper 

end as shown in Figure C-8. Each of these elements can support two shears,  an 

axial load, two bending moments, and a torque. Element A is the one at the 

lower end and its free end forms the connection to the other structure. It is 

possible to have all six forces at this connection and the element can resist  all. 

Therefore, the first six m-designations correspond to these forces. At the low- 

e s t  mass point on the tank there may likewise be all six types of internal forces, 

so that these a re  basically the next m-designations at the end of element B, etc. 
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However, as it is not necessary in this problem to know the twists of each individ- 

ual element, but rather only the total twist of the component, element A has 

assigned to it the total torsional flexibility of the component. The remaining 

elements have no twisting degree of freedom. The procedure for the other tanks 

is similar. 

The spider beams are  separated into cantilever elements and simply 

supported beam elements. The possible internal forces on the extending canti- 

levers a re  two shears and an axial load. The simply supported beam elements 

a re  located between the ends of the cantilevers. On these elements, there occur 

bending moments about both axes at each end. These a re  shown in Figure C-9 .  

t z  

X 

t 
I1 I I 

Figure C - 7 .  Redundant Forces Xt in the Idealized Structure 
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" 5  Spider simply "5 
supported beam 

- = rotational - linear freedom 

r 

Spider cantilever beam 

Figure C-9. Spider Beam Degrees of Freedom 

The internal forces in the above discussions are determined for loads 

acting at any of the three types of points on the component: (1) h (2) h and i' b 
(3) ht. 

(1) 

(2) 

hi is the designation of the applied loads acting at the mass 
points of the component. 

hg is the designation of the sense and location of determinate 
connecting forces from adjoining structure. On the central 
tank, component I (Figure C-8), they are the six forces at the 
lower end. On component I1 (Figure C-10) there are none 
because the determinate connection to the other structures is 
the datum for this component. 

ht is the designation of the sense and location of redundant 
connecting forces from adjoining structure. 
component 11 these connecting redundants occur at the adjoining 
spiders. 

(3) 
For example, on 

Example : 

Consider the [cymh] matrix of component II, Figure C-10. Apply a unit 

hi (external) force at the second mass  point from the bottom in the y-direction. 

This is given the number 6. The reaction at the bottom is -. 625 and this is the 

v on element "A". Then, at element "C", the shear is v = -. 625 + 1 . 0  = .375 

and the moment mx = 30(-. 625) = -18.75, pointing in  the negative x-direction. 

When a unit redundant moment ht is applied at the top connection (#16) (refer 

also to Figure C-7) , a reaction of vx = .0125 is caused at the bottom connection. 

The internal forces in element rrD" are  vx = .0125, m = -50(. 0125) = -. 625 

which is negative, since the moment vector points in the negative y-direction. 

Y Y 

Y 

of 
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2. Cy] Matr ix  

Cy] is the flexibility matrix of the elements. It is shown diagramati- 

cally in  Figure C-11 fo r  component I and it is of this form for all components. 

The matrices on the diagonal a r e  the flexibility matrices of the elements, A, B, 

C, etc., of the component. 

X 
0 

Y 
A 

A z 

X 
e 

e 

e 
Y 

z 

Figure C-11. Flexibility Matrix of Component I 

? 

- 

It should be noted that the column order is the same as the row order 

in the [CY] matrix (Figure C-8). 

in Figure C-12. 

A typical matrix for a cantilever beam is shown 

m m m pz X Y z 
V V I X Y 

Q3 - 
3EI 

Y 
Q 3  - 

3EIx 

R 2  
2EIx 

2 -Q 
2EI 

Y 

R 
AE 
- 

R 
E1 
- 

X 

- 2 - R  
2EIy 
- 

R 
EI 

Y 
R 

GJ  
- 

- 
Figure C-12. Flexibility Matrix of a Cantilever Beam 

with Constant Cross-Section Properties 
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The signs of the matrix elements a re  appropriate for the structural elements 

oriented as on component I with respect to the reference axes. The row and 

column pertaining to twist is deleted for  all elements except A. This element 

of the flexibility matrix for A was obtained by taking R equal to the total length 

of the component. 

For the spider cantilevers, only the rows and columns containing the 

shears and axial load a re  applicable with due regard for signs. 

The Cy] matrix for the middle portions of the spider beams is as 
shown in Figure C-13. These a re  simply supported beams (refer also Figure 

C-9) with constant cross-section properties. 

m 
2 c1 m Z m% z m 

1 

1 z e 

e% 

2 z 9 

- 
a 

3EIc 

R 
3EIZ 

-a 
6EIc 
- 

-A 
6EIZ 
-. 

-R 
6EIc 
- 

-R 
6EIZ 

.e 
3EIc 

R 
3EIZ 

- 

Figure C-13. Flexibility Matrix of a Simply Supported Beam 

3. [fll Matrix 

The only components having internal redundants are the spiders, for 

which these matrices exist. 

[a] matrix. Each of the columns gives the internal forces in the elements caused 

by a particular unit redundant force. The elements are computed similarly to 

those of [a], but the equal and opposite forces on a cut which constitute a redun- 
dant a re  considered simultaneously. 

The row designations are identical to those of the 
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4. Coupling of Components 

a. [a] Matrix 

Consider the components connected in a statically determinate 

manner. A force influence matrix is formed from the application of unit external 

loads. Each element in a column is equal to the external force sustained by a 

point due to a load applied at that point o r  another point on the structure. In this 
problem there are  no loads applied externally at redundancies between components, 

so that there are no columns corresponding to t points. For each component 

there are a number of external load points and connection points, h, for which 

the values of the forces a re  sought. The h rows of [a] correspond exactly to 
the columns of the [CUI matrix. The rows are classified as hi, hb, ht. As there 

a re  no external loads at t 
redundant connection points (h 1 are  zero. The external load rows (hi) have 

entries only when the load is on that specific point of the component and are 
therefore on the diagonal of the matrix. When loads are applied to other compo- 

nents there will be forces at the determinate connection points ( hb) between the 

component and the other structure. 

P 

points, all entries on the rows corresponding to the 
P 

t 

An outline of the [%.I matrix for component I is given in 

Figure C-14. Refer to Figure C-2 for the j-designations and to Figure C-8 for 

the h-designations. When a unit load P. at j=2 is applied on the component 
3 

itself, it will only cause a force of 1 at the point h.=8. When a unit load P. is 
J J 

applied on another component, say at j=8, there will be forces at the connection 

of component VI to component I. In this case there is a positive shear in the x- 
direction of .125 and a positive torque of 9 .5 ( .  125)=1.1875 which are  the specific 

values of the elements checked for the points hb = 1 and h = 6 for component I. 

3 

b 

b. [b] Matrix 

The components are connected in a statically determinate 

manner as for the [a] matrices. 

obtained by applying unit redundant force pairs, which occur at the connections 

between the components, and calculating the forces a t  the h-points of each compo- 

nent. The row labels are therefore the same as for the [a] matrix. The 

The values for the rows of the [b] matrix a re  
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numbering and ordering of rows is the same as that of the columns of the [a] 
matrix of each component. The outline of these matrices for components I and 

II is given in  Figure C-15. 

D. THE FLEXIBILITY MATRIX 

The flexibility matrix [?..I of the sample problem was obtained by using 
1J 

the method of this report, and the specific data generated by the methods of the 

above outline. 

64D017 on the IBM 7090 digital computer. 

It was calculated by using Republic Aviation digital program 

Those flexibilities which could be calculated exactly by hand were checked 

against the computed values. The matrix elements were also checked for sym- 
metry and antisymmetry of displacements corresponding to certain unit applied 

loads. Those elements which were expected to have zero values were sufficiently 

close to zero, if not absolutely so, when compared to the diagonal elements to 

be interpreted as such. All checks were satisfactory. Therefore, it is concluded 

that this matrix is the correct flexibility matrix for the subject structure. 
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SECTION 111 - CALCULATION OF NATURAL MODES OF VIBRATION 

A. DETERMINATION OF THE DYNAMIC MATRIX 

1- Mass Matrix 

The mass matrix was obtained by assuming all the mass to be in the 

tanks. The spider beams were considered a s  massless springs. 

The length, diameter, and thickness of the tanks were scaled fron. 

consideration of the Saturn vehicle. The tanks were assumed to be completely 

filled with water. A sketch of the model is shown in Figure C-2. 

points per tank were used to describe the system for the sample problem. Each 

of these mass points were given three translational degrees of freedom. Table 

10 shows the masses assigned to each mass point. 

Four mass 

2. Transformation Matrix for the "Free-Free" Dynamic Matr ix  

L 

where 

rc1 
[MI 

Y i  

YO' eo 

X. 
1 

0 

The influence coefficient matrix obtained in the previous section was 

referenced to a plane connecting the four support points of the central tanks to 
the spider. It is thus held at  this plane. To ascertain the natural vibration modes 

of the vehicle in flight, it is necessary to release o r  "free-free" the vehicle. 

This is done in the following manner. The equations of motion of the unrestrained 

o r  "free-free" system can be written as: 

yi 'xi '0) = O2 CC] [MI cyi] (C. 1) 

= influence coefficient matrix for the restrained vehicle 

= massmatr ix  

= deflection of ith station 

= deflection and rotation of station previously considered as 
support point 

= distance from support point station to ith station 

= natural vibration frequency ( r adsec )  
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TABLE 10 

NATURAL VIBRATION MODES SAMPLE PROBLEM MASS DATA 

Degree of Freedom Mass 

X 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1 3  

14 

15 

16 

17 

18 

19 

20 

61 

62 

63 

64 

Y 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

65 

66 

67 

68 

2 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

69 

70 

71  

72 

92 

.15165 

.15165 

.15165 

.15165 

.07554 

-07554 

.07554 

.07554 

.07611 

.07611 

-07611 

.07611 

.07554 

.07554 

.07554 

.07554 

.07611 

.07611 

.07611 

.07611 

.15165 

.15165 

.15165 

.15165 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
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In addition, for a three-dimensional system there a re  six equilibrium 

equations of the form 

n ' m.y. = o 
i = O  

r-? 

- 1 1  

n 
F > m.x.y. + I~ eo = o  

- 8  1 1 1  
i=O 

Equations ( C .  2) and (C. 3) are  then used to eliminate yo and 0 from 

Eq. ( C .  1). The transformation matrix [F] then has the form 
0 

where 

CI d = unit matrix n x n 

B1 = matrix of rigid body modes, i. e. , translation, rotation, etc. 

M2 s2 

s2 I2 

M3 

s3 

= total mass in ith direction 
Mi 

S. = unbalance about reference axis 

I. = moment of inertia about reference axis 

where 

1 

1 

[MI = mass matrix 

So that the final dynamic matrix is 
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and this is the matrix which is operated upon to obtain the "free-free" eigen- 

values and eigenvectors, corresponding to the natural frequencies and modes of 

the vehicle in flight. 

B. DESCRPTION OF -- THE NATURAL S-B-RATION MODES 

The configuration described in the previous section has been studied for 

its natural modes of vibration. In applying the Lanczos method of minimized 

iterations, it must be borne in mind that any mode which is orthogonal to the 

initial starting vector will not be obtained. 

starting vector was selected which, it was believed, did not represent a conceiv- 

able mode of the structure, and hence would not be orthogonal to the other modes 

of the structure. As  a further precaution, two such starting vectors were  em- 

ployed. 

seven eigenvalues had converged to five significant figures each. For both init- 

ial starting vectors this convergence was recognized in 15 iterations, i. e. , n = 16. 

T o  guard against this eventuality, a 

The computer w a s  instructed to proceed with the iteration until the first 

For this sample problem only the first seven modes of the structure have 

been obtained. For the purpose of describing the deflections, the deformation is 

defined in terms of the three orthogonal translations x, y, and z. Here x repre- 

sents deflections perpendicular to the plane formed by the center lines of the two 

peripheral lox tanks (see Figure C-2); y represents lateral deflections perpendi- 

cular to x; and z represents vertical motion. 

The two lowest modes of the vehicle (Figures C-16 and C-17) exhibit the 

characteristics of basic first free-free bending of a beam in the two principal 

transverse directions. The different spider attachment conditions for the two 

types of peripheral tanks cause these two first bending modes to have different 

natural frequencies. Inasmuch as the connection of the fuel tanks to the upper 

spider is more flexible than that of the lox tanks, the principal axis in the lowest 

bending mode is the axis formed by connecting the three lox tanks (see Figure 

C-1). 

It is seen that the peripheral tanks off the principal axis translate vertically out 
of phase with each other. 

The second mode (Figure C-17) has its principal axis perpendicular to this. 
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The third mode (Figure C-18) involves a torsion-type deformation pattern. 

There is no vertical deflection, the motion being essentially a twisting of the 

longitudinal axis. 

The fourth and fifth modes (Figures C-19 and C-20) represent primarily 

bending of the peripheral tanks in the two transverse directions. The lower of 

these two modes involves large motions of the fuel tanks in the x-directions. 

These a re  opposed by smaller motions of the lox tanks of the first stage out of 

phase with the fuel tanks. In the fifth mode the x-motion is replaced by y-motion. 

Inasmuch as no mass points were assumed for the spider, the extent to which 

spider flexure is present in these modes cannot be readily determined. These 

modes f a l l  under the heading of cluster-type modes. 

The sixth mode (Figure C-21) is another cluster-type mode. This mode 

exhibits the characteristic of the peripheral tanks moving in the x-direction out 

of phase with the central tank. 

The seventh mode (Figure C-22) is also a cluster-type mode and appears 

to be somewhat similar to the sixth mode rotated 90 degrees, with one significant 

difference. In the fifth mode, all the peripheral tanks are in phase; in the seventh 

mode, this condition no longer holds. It is true, however, that both these modes 

involve lox tank motion primarily. 

All cluster-type tank modes exhibit somewhat of a rocking motion to some 

extent, wherein opposite peripheral tanks will be translating vertically out of 

phase with each other. 

The seven modal frequencies are  calculated as: 

1. 12.502 c.p. s .  
2. 14.512 c. p. s. 

3. 19.075 c. p. s .  
4. 23.210 cop. s. 

5. 24.446 c. p. s. 

6. 27.934 c. p. s. 

7. 28.526 c. p. s. 
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It should be noted that the cluster-type modes a re  bunched rather closely. This 

is undoubtedly due to the essential symmetry inherent in the system, and the 

small decoupling effect introduced by the different end-fixity conditions and the 

somewhat different masses for the fuel and lox tanks (see Table 10). This bears 

out the ability of the procedure to detect closely bunched natural frequencies. 

C. COMMENTS FOR EFFICIENT APPLICATION OF THE METHOD OF MINI- 
MIZED ITERATIONS 

The calculation consisted of two phases. The first phase is the determina- 

tion of the eigenvalues. At each iteration the roots of the resulting polynomial are 
derived. The iteration proceeds until the desired number of roots have converged. 

The following table shows the first seven roots of the last three polynomials. The 

roots were obtained using triple precision, but only the first seven significant 

figures a re  employed in the final print-out. The test for convergence involved 

the first five significant figures. 

XN1 6 XN1 5 XN14 

1. 3.241388 3.241388 3.241388 

2. 2.405435 2.405435 2,405435 

3. 1.392283 1.392166 1.289137 

4. .9404117 .9404117 ,9403751 

5.  8477335 .8477335 8477320 

6. a 6492513 .649  25 10 .6492006 

7. ., 6225753 6225750 .6225239 

It is interesting to note that the third mode apparently was the last of the 

above to converge. This is undoubtedly due to the fact that the scalar product of 

the initial starting vector and the vector representing the third mode is compara- 

tively small. If one considers the initial starting vector as a kind of forcing 

function, the relatively slow convergence of the third eigenvalue can be attributed 

to the fact that the starting vector used is a poor forcing function for  this parti- 

cular mode. Nevertheless, it can be seen that the procedure has sensed this 

mode and determined it. This makes it apparent, however, that the proper 

application of this method requires a familiarity on the par t  of the user  with the 

anticipated nature of the modal patterns. A judicious choice of starting vectors 
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will result in efficient and rapid determination of the desired modes and frequen- 

cies with a minimum of starting vectors and machine time. Inasmuch as this 

phase of the program as presently constituted required 60-75 minutes of machine 

time for each starting vector, rapidity of convergence effects a significant sav- 

ing in computer time. 

Initially it was contemplated that the machine would enter the eigenvector 

phase of the program directly upon realizing that the desired number of eigen- 

values had converged. It was found, however, that the large number of computer 

tapes required to accomplish both the eigenvalue and eigenvector phase for the 

sample problem introduced many machine problems. For this reason the eigen- 

vector phase of the program has been reprogrammed as a separate program which 

employs as input the results of the eigenvalue phase. The eigenvector phase re- 

quired three minutes for the sample problem. The program employs Eq. B. 22 

for the generation of the eigenvalues. Inasmuch as this requires the evaluation 

of the various polynomials at the root, it is apparent that, a s  soon as convergence 

is attained for a particular eigenvalue, the ser ies  can be truncated. 

found that, if  the ser ies  is not truncated at this point, numerical "hash" due to 

round-off e r ror  may accumulate and may eventually obscure the resulting eigenvector. 

The procedure as presently constituted can print out the cumulative eigenvector 

so that the formulating ser ies  can be truncated where desired. 

It has been 
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SECTION N - RECOMMENDATIONS 

It is apparent that with present computer facilities there is a maximum size 

problem for which this method is practical. In order to determine this maximum 

size, a larger scale problem should be attempted. One such system is the actual 

Saturn vehicle which would constitute a large scale application. The results of such 

a study could be checked against test results as a further assessment of the useful- 

ness of the method described in this report. 
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